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Vibration-Translation Energy Transfer in Anharmonic

Diatomic Molecules: I. A Critical Evaluation

of the Semiclassical Approximation

Robert L. McKenzie

Ames Research Center, NASA, Moffett Field, California 94035

The semiclassical approximation is applied to anharmonic diatomic oscillators

in excited initial states. Multistate numerical solutions giving the vibra-

tional transition probabilities for collinear collisions with an inert atom

are compared with equivalent, exact quantum-mechanical calculations. Several

symmetrization methods are shown to correlate accurately the predictions of

both theories for all initial states, transitions, and molecular types tested,

but only if coupling of the oscillator motion and the classical trajectory of

the incident particle is considered. In anharmonic heteronuclear molecules,

the customary semiclassical method of computing the classical trajectory inde-

pendently leads to transition probabilities with anomalous low-energy resonances.

Proper accounting of the effects of oscillator compression and recoil on the

incident particle trajectory removes the anomalies and restores the applica-

bility of the semiclassical approximation.

I. INTRODUCTION

While the collisional excitation of vibrations in diatomic molecules has

been a frequently studied topic for decades, present interest in processes that

depend on the details of energy transfer to specific vibrational states has put

1



new demands on the analysis of such collisions. A notable example is the collec-

tion of processes occurring in infrared diatomic gas lasers. In many of the

recent devices, operating at near-atmospheric densities, a major mechanism for

the loss of vibrationally excited molecules is through vibration-translation

energy transfer. The rates increase with increasing quantum number, making

collisional energy transfer for molecules in initially excited vibrational

states an important aspect in the analysis of these laser processes.

Past studies of vibrational energy transfer have dealt mainly with harmonic

oscillator models initially in the ground state.
1 Typically, a linearized inter-

action potential between the oscillator and an incident particle is used, and

the particle trajectory is assumed to be collinear with the molecular axis. By

adopting a semiclassical approximation, exact and convenient analytical solu-

tions for the oscillator transition probabilities are then obtained for any

initial state.2'3 The inaccuracy of the harmonic oscillator model has been

demonstrated by Mies, 4 however, even for transitions originating from the ground

state. Mies found that the use of an anharmonic oscillator potential introduces

matrix elements associated with oscillator transitions that are no longer equal

on the diagonal. (A harmonic oscillator with an interaction linear in the

oscillator coordinate has diagonal matrix elements equal to zero.)
1 .The nonzero

differences in the diagonal matrix elements allow additional phase differences

between the time-dependent oscillator eigenfunctions to be retained during a

collision and can lead to large corrections to the harmonic oscillator model.

Because the origin of these corrections resides in the unperturbed oscillator

eigenfunctions (from which the matrix elements are computed) 
their effects are

not reproduced by the popular practice of simply inserting oscillator eigenenergies,

corrected for anharmonicity, into a harmonic oscillator theory. Similar state-

ments can be made about harmonic oscillators but with a nonlinear interaction.
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Again, the diagonal matrix elements are nonzero and unequal, but, although

their differences are smaller than for an anharmonic oscillator, the additional

phase differences modify the coupling between adjacent states and allow multiple-

quantum transitions to occur directly. This study examines the characteristics

of vibrational energy transferfor oscillators in initially excited states

using both an anharmonic Morse oscillator model and an interaction that is non-

linear in all coordinates.

As a first step, this paper evaluates the applicability of semiclassical

methods to anharmonic oscillators. The semiclassical approximation of describ-

ing the motion of the incident particle classically and the oscillator response

quantum-mechanically is attractive because of its analytical and numerical sim-

plicity. Applications of vibrational rate information usually do not require

a precise description of the energy transfer at collision energies near the

threshold of vibrational excitation; and further, the incident particle

de Broglie wavelength associated with higher collision energies is normally

much less than the interaction ranges considered. Hence, semiclassical approxi-

mations are expected to be suitable.

A well-known weakness of semiclassical theories, however, is the inherent

lack of energy conservation. Several methods of compensation have been suggested

that aim at interpreting either the classical trajectory energy,
4 or velocity5

in terms of corresponding values averaged over the collision. Comparisons

described here between these semiclassical predictions and some exact quantum-

mechanical calculations 6 show that while such an interpretation is necessary to

correct the semiclassical predictions, the results are insensitive to the choice

of method in the energy range of practical interest.

Regardless of the corrections for energy conservation, the conventional

semiclassical treatment fails badly in some cases. The failures appear in the
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form of anomalous resonances that occur only in anharmonic oscillator models

and are caused by an incomplete account of the oscillator compression and

recoil during impact. Within the usual semiclassical framework, the classical

trajectory is computed assuming the oscillator to remain in a pure' eigenstate

having a fixed average separation of its nuclei. In reality, the oscillator

is compressed by the impact and enters a mixed-state condition in which the

average internuclear separation oscillates with frequency components from each

of the excited states. To include this behavior in the semiclassical theory

is not equivalent to conserving energy, but is has the effect of introducing

an oscillator "feedback" on the classical trajectory. The effect can change

the entire nature of the results in some cases. Extremely heteronuclear or

anharmonic molecules, such as the hydrogen halides, are in the class strongly

affected.

In this paper, the collision geometry is confined to collinear encounters,

making possible direct comparisons with the results of reference 6. Calculations

have been made of more realistic three-dimensional encounters, 7, 8 but mainly for

harmonic oscillators initially in the ground state. The vibrational transition

rates are shown to be strongly dependent on the accompanying rotational transi-

tion, and the effect is expected to increase for anharmonic oscillators in

excited vibrational states. However, for the purpose of evaluating the semi-

classical approximation, little would be gained by adding a more complex colli-

sion geometry.

In the paragraphs to follow, a multistate semiclassical formulation requir-

ing numerical solution is assembled, that includes modifications of the standard

treatment to account for the effect of oscillator response on the classical

trajectory. The model is entirely equivalent to the fully quantum-mechanical

model in reference 6, except for the classical treatment of the incident particle

motion.
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The accuracy of a first-order perturbation theory used by Mies
4b for

anharmonic oscillators is also evaluated. As expected, the first-order theory

is suitable only where the transition probabilities are small; but it is also

limited to cases where the oscillator feedback effects are negligible. Such

cases pertain mainly to heavy homonuclear molecules impacted by lighter colli-

sion partners.

II. SEMICLASSICAL MODEL FOR COLLINEAR COLLISIONS

The collinear collision geometry is shown in Fig. 1 for a structureless

particle of mass ma impacting a diatomic heteronuclear molecule with nuclear

masses mb  and mc. The impacted oscillator nucleus mb  extends from the

molecular mass center by a distance yr where y = mc/(mb + mc). A three-body

center-of-mass reference frame is taken in which the relative collision speed

is u. (Barred symbols identify the incident particle variables to be evaluated

classically and later interpreted as average values.) Except for the notation,

this configuration is identical to those used in references 1, 4, and 6.

To remain compatible with the quantum-mechanical calculations of reference 6,

the interaction potential is given the simple form

V(y) = A e- y / L

where L and A are constants. The potential in terms of mass-center and

oscillator coordinates becomes

V(x,r) = A e- /L erL (1)

The Hamiltonian for the three-body system is given by

2 p2
= o+ -P + Vo(r) + V(x,r)

where the symbols with subscripts o refer to oscillator quantities and the

other symbols denote incident particle variables. The oscillator reduced mass
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is o = mbmc/(mb + mc) and the collision reduced mass is

1 = ma(mb + mc)/(ma + mb + mc).

A. The Incident Particle Motion

The application of Ehrenfest's theorem to the incident particle dynamics

guides the formulation of its equation of motion with the quantum-mechanically

averaged quantities properly included:

dt \ -R \ X

d<x> 3

By separating the total wavefunction according to

Y(x,r,t) = #(x,t)9(r,t)

and treating the incident particle classically so that

p u and (e-x/L eYr/L) - e-i/L yr/L)

the equations of motion for the incident particle combine with Eq. (1) to give

d2x A -x/L yr/dt2

where

(yr/L) = *0.*(r,t)eYr/L (r,t)dr (2a)

In the case of the purely repulsive exponential potential used here, the constant

A only influences the distance of closest approach, a quantity of no direct

consequence to the transition probabilities, and may be removed by the

transformation:

E 1 -
A + exp(xc/L) where E=-pu2

Vkk c 2

is the semiclassical relative collision energy before interaction. Vkk is the

time-independent diagonal matrix element defined by

6



Vkk = k*(r)eYr/L k(r)dr (2b)

and k(r) is the initial oscillator stationary-state eigenfunction. If a new

interaction coordinate is defined as z = x - Xc, the incident particle motion

is then described by

d2z -E 
-z/L (3a)

where

6~ e r/L/Vkk (3b)

The variable 6 represents the quantum-mechanical average effect of the oscil-

lator motion on the'interaction potential. Note that, in general, eYr /L does

not commute with the oscillator momentum operator in X, causing 6 to depend

on the instantaneous condition of the oscillator during the collision.

To compute the trajectory classically, the usual practice at this point

is to consider the oscillator fixed in its initial pure eigenstate so that

'P(r,t) k(r). Then 6 * 1 and the classical equation of motion is reduced

to the equation for a constant energy trajectory:

d2 z E -z/Le = -e (4)
dt2 L

Equation (4) can be integrated analytically1 so that the interaction potential

E -z(t)/L yr/LV(t,r) = E e e (5a)
kk

can be written explicitly in terms of time by use of the result:

e-z(t)/L = sech2(l) (5b)

In such an approximation, the transformation parameter xc becomes the

distance of closest approach.
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B. The Oscillator Motion

The unsteady motion of the oscillator is treated in the usual way by

expanding its time-dependent wavefunction (r,t) in terms of stationary-state

Morse oscillator eigenfunctions n (r) according to

(r,t) . c n(t)e-iwnt n(r) (6)
n

where wn = En/h and En  is the nth state eigenenergy. For the Morse oscil-

lator, n = (n + .1) - weXe(n + 1)2. The wavefunction 4(r,t) is the

solution of the time-dependent SchrSdinger equation:

ih (r,t) = 2  V(r) + V(t,r (r,t) (7)
at 2P at 2

where

V(r) = D[e-2a(r-re) - 2 e-a(r-re

The solutions are invariant with the equilibrium separation re and it may be

set equal to zero. The remaining potential parameters are equated to the

familiar spectroscopic constants we  and Xe according to D = ( 4 X )-1 and

a 2 2nwe(2poXe)1/2 .

The solution of Eq. (7) is reduced in a standard way to a set of linear,

coupled differential equations for the expansion coefficients defined in Eq. (6).

Denoting

Vnj = n*(r)er/L .j(r)dr (8)

and incorporating the form of the interaction potential in Eq. (5a), the

coefficients in Eq. (6) vary in time according to

dc(t) E -z(t)/L i( j)t
ih n - e c (t)e Vnj  (9)

dt kk j

8



The probability that an oscillator, initially in state k at t = -w will

reside in state n at t = +=, is then Pkn(E) = Icn( )12 with the initial

conditions Icj(- ) 12 = 6kj where 6kj is a Kronecker delta.

The matrix elements given in integral form by Eqs. (2b) and (8) may be

evaluated analytically.4 ,6 If, for convenience of notation, we define a = y/aL

and = Xe1 , then4'6

V = a NN (_a r - j) (-1_)£+j- n (1 +a+j - )r(-a - 1 - j -n+ 9)
nj a n! L . !(j - 9)!r(1 + a+ j -n- )r(B - 2j + 4)

4=o

where r(C) is the gamma function 10 with argument C and the normalization

constants are

Nm = [a(a - 1 - 2m)/r(B - m)]1/2

To stay within the maximum exponent constraints imposed by most computers, the

evaluation of matrix elements with large indices requires the ratios of gamma

functions to be reduced to products of algebraic terms and a residual gamma

function with an argument less than unity.10

C. Coupling of the Oscillator Motion and the Classical Trajectory

The term e- /L  in Eq. (9) may be evaluated either from Eq. (5b) or by

the coupled integration of Eq. (3). The latter case requires evaluation of R

in terms of the expansion coefficients - a task easily done by combining

Eqs. (2) and (6) to give

1 = E1-- c*(t)cm (t)e ( m)t V (10)
kk a m

where k again denotes the initial state.

Equation (10) characterizes the classical nature of the oscillator motion.

The motion will become oscillatory as-soon as a mixed-state condition is pro-

duced during the collision and will remain so afterward. Near closest approach,
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large transient excursions of d6 occur, reflecting the oscillator compression

and recoil.

D. First-Order Perturbation Solution

From a practical viewpoint, the convenience of an analytical solution war-

rants even the coarsest assumptions, provided the limits of applicability are

understood. This study attempts to confirm those limits for a first-order

perturbation analysis applied to anharmonic oscillators in initially excited

states. We shall see that the perturbation solutions are quite successful

within their intended limits and will serve as a useful approximation in many

cases.

An analytical solution of Eq. (9) may be obtained if the motion of the

classical particle is described by Eq. (4). For an initial state k, the per-

turbation method further requires that Ick(t) I2  1 and Icn(t)12 << 1

throughout the duration of the collision. Then only the initial and final

states are coupled, allowing Eq. (9) to be written in the integral form:

nk - 2

jc n(-)12 Vk f sech2 (Lexp [ rnk(t')dt dt (11)

with

nk(t') = h(n - k) nn - kk)(E/Vkk)sech2 )

Equation (11) may be integrated to give4 (b)

V nk 2nghL M(I + ig,2,i2X) (12)
kn Vkk h sinh(ng)

where

gLu
g = L( - wk)/u =  (Vnn Vkk)/Vkk
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and M(l + ig,2,i2X) is the confluent hypergeometric series with complex argu-

ments. The necessity of complex algebra may be avoided when computing the

modulus jM(l + ig,2,i21)j by noting its relation to the Coulomb wavefunction

with zero indice. 10 The result is

IM(1 + ig,2,i2X)l = (-g,x) .(13)

where

Do(-g,X) - A 1

£=1

with A = 1 and A2 = -g. The remaining coefficients are obtained from

(a - 1)A = -2gAR_1 - AZ-2

E. Numerical Solution Methods

Solutions to the coupled set of Eqs. (3) and (9) were obtained by first

separating Eq. (9) into a separate set for each complex component and adopting

the equivalent of a multiple-state, close-coupling approach. Numerical inte-

gration was accomplished with a polynomial extrapolation algorithm originally

developed by Bulirsch and Stoeril and given in FORTRAN by Gear. 12 Fifth-order

polynomials and a required accuracy of one part in 108 seemed to optimize the

calculation of a selected test case and allowed a complete encounter to be com-

puted in 200 to 1000 steps, depending on the collision energy and the number

of coupled states. Solutions were started with the molecule in a pure eigenstate

and with the incident particle at a distance such that the interaction potential

had a value 10-4 times the estimated value at closest approach. The calculation

was terminated at an equal distance after the encounter. All values of Icn(t)12

were sufficiently constant at termination. The closure relation EIcn(t)l2 = 1
n

was used throughout the encounter to monitor accuracy. At the maximum collision

energies considered, up to 15 levels above and below the initial state were
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required to ensure that the solution was unaffected by neglected states. In

the energy range where the perturbation theory was successful, as few as two

states were adequate. The computing times required to obtain all of the matrix

elements and integrate the dynamics of a 12-state model was approximately

0.1 sec per step on a single-precision (14-digit), CDC-7600 computer.

III. AN EVALUATION OF THE SEMICLASSICAL APPROXIMATION

The availability of tabulated results for exact quantum-mechanical calcu-

lations6 over a broad range of collision parameters provides an excellent

opportunity to evaluate the semiclassical approximation in this application.

The extent of the examples covered is characterized by the range of'the mass

parameter m = mamc/mb(ma + mb + mc). For the cases chosen, m varies from

0.006 for Br2-H collisions to 3.7 for HBr-He collisions. (Reference 6 labels

one data set as Br2-H2 but uses a mass parameter corresponding to Br2-H.) A

full range of oscillator frequency and anharmonicity is also represented.

Figures 2a-f compare the predictions of the semiclassical theory and its first-

order approximation to a sampling of the results in reference 6 for the

homonuclear oscillator cases. The semiclassical transition probabilities are

plotted as functions of the normalized initial kinetic energy of the incident

particle, E/h e . The probabilities from reference 6, hereafter referred to as

"exact," are shown at their appropriate total energies, ET/hwe, and at energies

displaced according to a symmetrization scheme to be discussed. In the para-

graphs to follow, the comparisons in Figs. 2a-f are used to evaluate the

validity of several methods of compensating for the lack of energy conservation

in the semiclassical approximation and to demonstrate the influence of coupling

between the recoiling quantum-oscillator and the classical incident-particle

motion.
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A. Energy Conservation and the Classical Parameters

The absence of energy conservation in the semiclassical approximation

requires an interpretation to be made of the initial relative kinetic energy

E assigned to the classical trajectory. It may be considered as an effective

value, averaged over the trajectory from the true initial value Ek to the

final value En, when the molecule undergoes a transition from state k to n.

If total energy is conserved, ET, Ek, and En are related by

Ek + hw= ET = E + h (14)

No formal guidelines are available, however, for simply relating E to the exact

energies Ek and En . Perhaps the closest one can come is with the method

described in reference 5 where the formulation of a linearized quantum-mechanical

approximation is compared to its semiclassical counterpart. Expressions for the

transition probabilities given by both approximations become similar if E is

defined by the average velocity 5 = (un + uk)/2. Another approach is taken by

Mies4 who uses the intuitively appealing arithmetic energy average E = (En + Ek)/ 2 .

Combined with Eq. (14), the total energy can then be related to the average

energy according to:

ET = + h( n + Wk)/2  (15)

where h(wn + k)/2 is the oscillator energy averaged over the transition.

Occasionally, even the geometric average E = (EkEn)1/2 has been suggested.

Equation (15) was chosen here for the comparisons in Figs. 2a-f, where

it is shown to be generally successful. It correlates the predictions of both

theories for all initial states, transitions, and mass ratios tested and appears

applicable for all energies R from threshold up to at least the first proba-

bility maximum. Figure 2c shows correlation beyond the first maximum. Note

however, that in the cases where the effect of the oscillator motion coupled to
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the classical trajectory is distinguishable, the coupling must be included to

preserve the accuracy of Eq. (15). (See Fig. 2a for example.) The other

averaging methods are no less accurate, however. Table I reveals that all of

the averaging methods described give essentially the same results and that,

within the range of these comparisons, the best choice cannot be selected. Dif-

ferences in the three methods (or apparently any other method) will only become

distinguishable at values of ET >> hwe where, from thermal considerations, ET

is beyond the range of practical interest. From a pragmatic viewpoint, Eq. (15)

is attractive because, unlike the other averages, it provides an energy trans-

formation, E - E, independent of E and allows the energies Ek  or En  to

be written explicitly in terms of E with simple algebraic form. These features

are convenient for additional manipulation such as thermal averaging.

Figures 2a-f show correlations of the exact and semiclassical predictions

for transitions in which the oscillator energy is increased. If Eq. (15) is

adopted and the exact probability for a transition k n is denoted Pkn(Ek)'

where Ek  is the initial kinetic energy and wk < Wn then

Pkn(Ek) Pkn ( )  (16a)

with

E= Ek -h(Wn - k) / 2  (16b)

An equivalent interpretation of the semiclassical prediction for a transition

n - k, in which the oscillator loses energy, follows from the principle of

detailed balance. 13 In this application where only collinear collisions and

transitions among nondegenerate states of the same spin are considered, detailed

balance requires that

EkPkn(Ek) = EnPnk(En) (17)
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The absence of energy conservation is reflected in the semiclassical result

Pkn ( ) = Pnk(E) (18)

so that the interpretation of Pnk(E) equivalent to Eq. (16) must be

En + h(w - Wk)
Pnk(E) = E nk

n

where

S= En + h(wn k) / 2  (19b)

and E is now the initial energy.n

B. The Influence of Oscillator Response on the Classical Motion

The discussion to this point has been confined to homonuclear molecules.

Figures 2a-f indicate that the coupling of oscillator motion and the classical

trajectory has a noticeable effect only for the most anharmonic molecule, H2,

and then only when struck by a relatively heavy particle, He. However, semi-

classical calculations for heteronuclear cases are much more sensitive to the

oscillator response. In the customary semiclassical formulation, the incident

particle dynamics are related only to its distance from the mass-center 
of the

molecule, and no regard is given for the location of the impacted nucleus.

(See Eq. (4) for example.) In an extreme heteronuclear case where the impacted

nucleus was extended to a distance similar to the distance of closest approach,

the incident particle could spatially overlap the impacted nucleus without

constraint. Of course, even the approach to this extreme situation signals

the failure of the assumptions leading to Eq. (4).

The hydrogen-halides represent examples of diatomic molecules whose hetero-

nuclear properties are sufficient to influence the incident particle motion,

with their effects further augmented by the accompanying large anharmonicity.

As an example, Fig. 3 illustrates the results for HBr-He collisions where H
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is the impacted nucleus. Similar results were obtained for HCl-He and are

assumed to be characteristic for all of the hydrogen-halides. Both the semi-

classical numberical solutions and analytical theory predict an anomalous reso-

nance at low energy when the classical trajectory is obtained from Eq. (4). The

resonance is a combined result of an improper trajectory and the oscillator

anharmonicity, since similar calculations treating the molecule as a harmonic

oscillator behaved normally and in accordance with corresponding quantum-

mechanical solutions.6 Considerable care was exercised in verifying the reso-

nance as a real solution of the theoretical model rather than a numerical arti-

fact. The similar behavior of the analytical solution supports the conclusion

that the effect is real for the model used. When oscillator motion is included

via Eqs. (3) and (10), the resonance disappears and the solution is more in

accordance with the quantum-mechanical results for single-quantum transitions.

However, multiple-quantum probabilities such as P02 still display a low-

energy anomalous resonance. The interpretation of E for single-quantum tran-

sitions is also shown to be less accurate but Eq. (15) still performs well near

threshold. The results suggest that the interference between the oscillator

and the incident particle is not fully accounted for; but if it were, Eq. (15)

would apply.

The effects of the oscillator motion are not generated simply by large

excursions of 61 during the collision. Figure 4 compares the time-dependent

variation of 6 with and without the effects coupled to the collision dynamics

for two extreme cases: (a) H2-H collisions, where the excursions of 61 are

largest, but the effect is negligible; and (b) HBr-He collisions, where the

excursions are smaller, but a phase shift is introduced in the oscillator motion

that severely alters the remaining oscillator response.
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C. Applicability of First-Order Perturbation Theory

Figures 2 and 3 amply demonstrate the fact that not only must Pkn be

small for the first-order theory to apply but that the transient motion of the

oscillator must also have no significant effect on the collision dynamics.

The appearance of a probability maximum is always an artifact of the semi-

classical perturbation approximation and signals the inapplicability of the

theory. These conclusions are not surprising, but they further constrain the

anharmonic oscillator perturbation theory to heavy homonuclear molecules such

as N2, 02, and the halides. First-order perturbation calculations for slightly

heteronuclear molecules such as CO also require careful attention. Just as in

the case of H2, collisions of CO with lighter particles (e.g., CO-He collisions)

were unaffected by the oscillator motion. However, perturbation calculations

of collisions with heavier particles (e.g., CO-Ar collisions) displayed large

errors due to the coupled oscillator motion and also due to an increased

coupling of adjacent oscillator states not included in the perturbation approxi-

mation. In the CO-Ar case, the perturbation-theory errors were not accompanied

by anomalous probability maximums in the energy range of practical interest.

IV. SUMMARY

The semiclassical approximation has been applied to vibrational transitions

induced in anharmonic oscillators by collinear collision with inert atoms.

Multistate numerical solutions have been compared with exact quantum-mechanical

calculations of an equivalent collision model for a wide range of initial

molecular states and collision partners. The comparisons allow a comprehensive

assessment of the semiclassical approximation for the anharmonic oscillator

model. The semiclassical predictions accurately reproduce the quantum-mechanical

transition probabilities for all initial collision energies from threshold to

at least the first probability maximum if either the semiclassical collision
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velocity or energy is interpreted as a simple average of the exact initial and

final values. The accuracy of the correlation between both theories is not

sensitive to the choice of averaging method.

The semiclassical approximation, in its usual form where the classical

trajectory is computed independently, was found to be applicable to heavy

homonuclear molecules such as N2, 02, and the halides on impact with lighter

partners. Lighter homonuclear molecules such as H2 showed poorer agreement

when impacted by a heavier collision partner. Heteronuclear anharmonic mole-

cules such as the hydrogen halides displayed anomalous resonances at low

energy that do not appear in their harmonic counterparts. The accuracy of the

semiclassical approximation for light or heteronuclear anharmonic molecules was

significantly improved by coupling the effects of the time-dependent average

motion of the recoiling oscillator to the classical trajectory.

A convenient, analytical, first-order, perturbation analysis for anharmonic

oscillators was found to be accurate for small transition probabilities, but

only if the effects of the oscillator motion on the classical trajectory were

unimportant. The analytical approximation is therefore not applicable to

significantly anharmonic and heteronuclear molecules and must be applied with

care for slightly heteronuclear molecules such as CO.
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TABLE I. A comparison of symmetrization methods applied to anharmonic H2

ET -E

hwe

Transitions Observed 1 -1 

Fig. 2a-b = - (E + Ek) u = 1- (un + Uk) = (EEk)1/2
(a) (b) (b)

0-1 1.0 0.97 0.99 1.01

0-2 1.3 1.41 1.46 1.50

0-3 1.7 1.83 1.94 2.05

2-3 2.7 2.75 2.76 2.78

2-4 3.1 3.14 3.20 3.26

2-5 3.5 3.51 3.65 3.80

5-6 5.0 5.03 5.06 5.08

aThe observed energy difference between the semiclassical and exact results

for a given probability near threshold. The semiclassical results include

oscillator feedback.

bComputed for E/hwe = 6.
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Fig. 1. Colinear collision geometry.
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10-2. / " x

10-3

10-4 /
(a)I

10-5 1. __
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a. H2 (k = 0) - He collisions; O: k -+ n = 0 1; 0: k - n = 0 + 3.

Fig. 2. Comparisons of semiclassical and quantum-mechanical
6 transition proba-

bilities for homonuclear molecules. All calculations are done for

L = 2x10-9 cm. Open symbols denote points tabulated in reference 6 and

plotted according to Eq. (15). The symbol X locates the value of

ET/hW e . The curves are semiclassical multistate solutions

using classical trajectories coupled to the oscillator motion via Eq. (3).

The curves - are the same without coupling via Eq. (4).

The curves ---- are first-order perturbation solutions given by Eq. (12).
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Fig. 2b. H2 (k = 2) - He collisions; 0: k + n = 2 + 3; 0: k + n = 2 5.
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Fig. 2c. H2 (k = 0) - H collisions; coupled and uncoupled solutions are super-

imposed, 0: k n = 0 +1; O0: k - n = 0 +3.
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Fig. 2d. Br2(k = 0) - H collisions; coupled and uncoupled solutions are super-

imposed, 0: k - n = 0 - 1; 0: k - n = 0 - 2;>: k n = 0 + 3.
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Fig. 2e. N2 (k = 0) - (N2 ) collisions; O: k - n = 0 + 1; 0: k n = 0 2.
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Fig. 2f N2 (k = 2 or 5) - (N2) collisions; 0: k + n = 2 + 3; 0: k + n = 2 4;

A: k n = 5 + 6.
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Fig. 3 Comparison of semiclassical and quantum-mechanical transition proba-

bilities for HBr(k = 0) - He collisions. The impact is between H and He.

The notation is the same as in Fig. 2. 0 denotes k - n =0 i1.
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Fig. 4 Transient oscillator effects on the interaction potential. 61 is defined

by Eq. (3b). The curves denote the potential term with the oscil-

lator motion coupled to the classical trajectory. The curves - - - -

denote the potential term without coupling.
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